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Abstract Resources and environmental systems manage-

ment (RESM) is challenged by the synchronic effects of

interval uncertainties in the related practices. The syn-

chronic interval uncertainties are misrepresented as random

variables, fuzzy sets, or interval numbers in conventional

RESM programming techniques including stochastic pro-

gramming. This may lead to ineffectiveness of resources

allocation, high costs of recourse measures, increased risks

of unreasonable decisions, and decreased optimality of

system profits. To fill the gap of few corresponding studies,

a synchronic interval linear programming (SILP) method is

proposed in this study. The proposition of interval sets and

interval functions and coupling them with linear pro-

gramming models lead to development of an SILP model

for RESM. This enables incorporation of interval uncer-

tainties in resource constraints and synchronic interval

uncertainties in the programming objective into the opti-

mization process. An analysis of the distribution-indepen-

dent geometric properties of the feasible regions of SILP

models results in proposition of constraint violation like-

lihoods. The tradeoff between system optimality and

constraint violation is analyzed. The overall optimality of

SILP systems under synchronic intervalness is quantified

through proposition of integrally optimal solutions. Inte-

gration of these efforts leads to a violation-constrained

interval integral method for optimization of RESM systems

under synchronic interval uncertainties. Comparisons with

selected existing methods reveal the effectiveness of SILP

at eliminating negativity of synchronic intervalness,

enabling risk management of and achieving overall opti-

mality of RESM systems, and enhancing the reliability of

optimization techniques for RESM problems. The exploited

framework for analyzing synchronic interval uncertainties

in RESM systems is helpful for addressing synchronisms of

other uncertainties such as randomness or fuzziness and

avoiding the resultant decision mistakes and disasters due

to neglecting them.

Keywords Resources and environmental systems

management � Synchronic interval uncertainty � Interval
linear programming � Interaction � Risk analysis

1 Introduction

Linear programming (LP) (Kantorovich 1940) is an

effective decision support tool for resources and environ-

mental systems management (RESM) (Anderson et al.

2015; Banos et al. 2011; Psacharopoulos 2014; Lin et al.

2012; Ahmad et al. 2014; Lee 2011; Ivanov et al. 2012;

Tang and Zhou 2012; Mérel and Howitt 2014). Simplicity

of LP models, e.g. linearity of parameter relationships,

singleness of optimization objectives, continuity of

parameter values, independence of constraints, certainty of

coefficient estimations and invariability of model features,

increases their applicability to RESM problems, but also
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decreases reliability of the optimization process due to

diverse complexities in RESM systems (Peter and Mayer

1976; Jamison and Lodwick 2001; Kahraman 2008; Birge

and Louveaux 2011; Quaeghebeur et al. 2012; Luhandjula

2014; Dong et al. 2014a, b, c, Dong et al. 2015). One of the

most challenging complexities is synchronic interval

uncertainty.

Ineffectiveness of estimation techniques, insufficiency of

data support, unpredictability of system noises, or other

potential reasons may cause the emergence of interval

uncertainty in the process of estimating LP model coeffi-

cients for future planning of RESM systems. It is of high

likeliness that fluctuation ranges, of which the distributional

information is unknown, are the only reliable estimation of

these uncertain coefficients (Dong et al. 2013a, b).

Accordingly, a series of interval linear programming (ILP)

methods (Charnes et al. 1977; Ishibuchi and Tanaka 1990;

Huang et al. 1992; Inuiguchi 1993; Tong 1994; Inuiguchi

and Sakawa 1995, 1997; Chanas and Kuchta 1996; Sengupta

and Pal 2000; Chinneck and Ramadan 2000; Inuiguchi et al.

2003; Dong et al. 2011, 2012; Cheng et al. 2015a, b, 2017)

were proposed to reflect the reality that uncertain coeffi-

cients may fluctuate within known ranges under unknowns

of distributions. Particularly, Huang et al. (1992) proposed

the ILP model as an integration of an LPmodel and interval

coefficients and developed a two-step solution (TSS) algo-

rithm relying on two dependent LP sub-models to solve the

ILP model. A problem of TSS was that interval-coefficient

constraints in the ILP model might be violated by the

obtained solutions in some cases, leading to decreased

reliability of TSS-based decision support. Accordingly,

Cheng et al. (2015b) exploited an interval recourse linear

programming (IRLP) approach which was verified to be

effective in resolving this problem, reproducing the largest

decision space excluding infeasible solutions, and enhanc-

ing the reliability of decision support for RESM. Due to high

feasibility and reliability, ILP has been gained extensive

attentions of scholars all over the world and has been applied

to many RESM studies (e.g. Cheng et al. 2009, 2015a, b,

2017; Dong et al. 2011, 2012, 2013a, b, 2014a, b, c, 2015). A

review of these studies was conducted in (Cheng et al.

2015b).

Furthermore, interval uncertainties in RESM problems

may be of synchronic effects because of the intersection of

system components. For instance, the coefficients of two

decision variables share an identical component of which

the uncertain property is only known as a range. This

component may result in synchronisms of the two coeffi-

cients. A particular example is presented in the second

paragraph of Sect. 3 for readers’ convenience. As a par-

ticular case of interactions of interval uncertainties, the

synchronism is easily identified and quantified. LP prob-

lems with coefficients being of synchronic interval

uncertainties are named as synchronic interval linear pro-

gramming (SILP) problems in this study. Reflecting such a

complexity and incorporating it into the decision support

process is desired for RESM practices. Failure in doing

these would misestimate ranges of system optimality, dis-

able reasonability of management schemes, sacrifice opti-

mality of programming systems, and threaten interests of

stakeholders in RESM systems.

However, synchronic interval uncertainties invalidated

existing methods in optimization of SILP systems. Previ-

ously, few methods were specifically proposed for sup-

porting SILP under synchronic interval uncertainties;

instead, decision making was mainly based on unreason-

able simplifications when employing existing methods.

Representative alternative ones consisted of LP (Kan-

torovich 1940; Dantzig 1963), Monte Carlo Analysis

(MCA) (Metropolis and Ulam 1949; Klaus and Albert

1995; Grinstead and Snell 1997), robust optimization (RO)

(Ben-Tal and Nemirovski 2002; Bertsimas and Sim 2004;

Ben-Tal et al. 2009; Bertsimas et al. 2011; Gabrel et al.

2014), interval linear programming (ILP) (Charnes et al.

1977; Ishibuchi and Tanaka 1990; Huang et al. 1992;

Inuiguchi 1993; Tong 1994; Inuiguchi and Sakawa

1995, 1997; Chanas and Kuchta 1996; Sengupta and Pal

2000; Chinneck and Ramadan 2000; Inuiguchi et al. 2003;

Dong et al. 2011, 2012; Cheng et al. 2015b, 2017), distri-

bution-based linear programming (DLP) (Charnes and

Cooper 1959; Prékopa 1990; Inuiguchi and Ramı́k 2000;

Ruszczynski and Shapiro 2003) including stochastic linear

programming (SLP) (Charnes and Cooper 1959; Prékopa

1990; Ruszczynski and Shapiro 2003), and synchronic

interval Gaussian mixed-integer programming (SIGMIP)

(Cheng et al. 2015a).

It is confronted with multiple challenges that these

existing methods are applied to solve SILP problems. The

most critical one is incapability of reflecting the synchronic

effect of interval uncertainties in modeling and solving

processes, e.g. for IRLP (Cheng et al. 2015b) and SLP (e.g.

Charnes and Cooper 1959; Prékopa 1990; Ruszczynski and

Shapiro 2003). Another one is weak effectiveness at

addressing interval uncertainties, which varies with tech-

niques. For instance, interval uncertainties are expressed as

representative deterministic values in LP, but the solutions

could hardly be optimal for both the selected values and

others. Distributions of uncertain properties, which are

originally unknown in SILP problems, are constructed

based on artificial assumptions in both MCA and DLP

including SLP. Imposing nonexistent distributional infor-

mation to uncertain properties results in the mismatch

between real-world problems and human-built models.

Resulting solutions are optimal for constructed models, but

their optimality could not be guaranteed in practices.

Heavy computational loads also restrict the applicability of
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MCA for large-scale SILP problems. In RO, interval

uncertainties are represented as an uncertainty set in which

elements are intervals; the solution is too extremely con-

servative to be acceptable for all decision makers who are

diversified in acceptability of constraint violation risks. ILP

is more effective at reflecting interval uncertainties than

other techniques; nevertheless, the tradeoffs between con-

straint violation and system optimality are hardly evalu-

ated, and the overall optimality of SILP systems is

unachievable. In comparison with the aforementioned

existing methods, SIGMIP (Cheng et al. 2015a) that was

developed for guiding air quality control under multiple

complexities including synchronic intervalness may be

more capable of addressing synchronic interval uncertain-

ties in RESM; however, SIGMIP cannot systematically

evaluate the individual impacts of synchronic interval

uncertainties for RESM practices and be taken as a gener-

alized method for RESM under synchronic intervalness;

most importantly, SIGMIP lacks a solid theoretical basis

and a comprehensive analysis of synchronic-interval RESM

systems, which is not helpful for development of more

advanced SILP methods.

As a result, execution of the RESM schemes obtained

through existing system optimization methods (e.g. Cheng

et al. 2015a, b) would result in a variety of problems such

as ineffective allocation of resources, a decrease of system

optimality, violation of constraints, and unexpectedly high

costs of recourse measures. Correspondingly, an SILP

method will be proposed in this study to mitigate the

challenge of synchronic interval uncertainties in RESM and

to fill the gap of few studies specialized in comprehen-

sively addressing this challenge. Specifically:

a. In Sect. 2, the origination, characteristics, influences and

quantitative analysis of interval uncertainties in LP

problems will be reviewed, building a necessary founda-

tion for discussions on SILP problems. Interval sets will

be defined to reflect interval uncertainties. Coupling of

interval sets andLPmodelswill result in the development

of interval linear programming (ILP) models.

b. In Sect. 3, the origination, influences, and characteriza-

tion of synchronic interval uncertainties in the pro-

gramming objective will be analyzed. Based on the

definition of interval functions, an SILP model, equiv-

alent to the integration of an LP model, interval sets,

and interval functions, will be proposed to parameterize

RESM problems under synchronic interval uncertainties.

c. In Sect. 4, an analysis of geometric properties of

feasible regions of SILP models will lead to proposi-

tion of constraint violation likelihoods (CVL). CVL

will enable quantification of constraint violation and

analysis of risk-profit tradeoffs under intervalness.

When the maximum acceptable values of CVL are

determined by decision makers, constraints of SILP

models will be converted as linear inequalities or

equalities. Equifinality of CVLs and constraint viola-

tion probabilities will be evaluated to reveal the

independence of the effectiveness of CVLs at reflecting

constraint violation risks.

d. In Sect. 5, the integrally optimal solution of an SILP

model will be proposed to quantify the overall

optimality of the model based on multidimensional

integral. Equivalence with existing related definitions,

further transformation of SILP models, and simplifi-

cation of models under particular cases will be

discussed. Integration of efforts in Sects. 4 and 5 will

result in exploitation of a violation-constrained interval

integral (VCII) method for solving SILP models. The

procedures of VCII will be specified in Sect. 5.

e. A simple problem as an abstraction of real-world RESM

problems will be introduced in Sect. 6 to demonstrate

the SILP model and the VCII solution algorithm. This

will facilitate potential users of the developed method,

avoid inappropriate usages and unscientific decisions,

and eliminate undesired socio-economic or eco-envi-

ronmental losses in SILP practices.

f. In Sect. 7, comparisons between SILP and selected

existing methods will reveal the effectiveness of SILP in

multiple aspects, e.g. reflection of interval uncertainties

and their synchronic effects, analysis of the tradeoffs

between constraint violation risks and system optimality

under unknown distributions, identification of the over-

all optimality of SILP systems, and elimination of

negative influences of the synchronisms of interval

uncertainties. Potential improvements and extensions of

SILP will also be discussed in this section.

2 Interval uncertainties

Linear programming (LP) can be expressed as optimization

of a linear objective function subject to linear equalities or

inequalities. A generalized formulation is maximization of

f = CX subject toAXB b andXC 0whereC = {cj | j = 1, 2,

…, n}19n, A = {aij | i = 1, 2, …, m; j = 1, 2, …, n}m9n,

b = {bi | i = 1, 2, …, m}m91; C, A and b are matrices or

vectors of real numbers; andX = {xj | j = 1, 2,…, n}n91 is a

vector of real-valued decision variables xj (j = 1, 2,…, n). A

programming problem that can be represented as an LP

model is named as an LP problem in this study.

The effectiveness of LP models is challenged by interval

uncertainties of properties of components in many real-

world RESM problems. For instance, the daily generation

rate of solid wastes is required for future planning of a

municipal solid waste system. The real value is unknown,
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distributional information is unachievable, and the only

reliable estimation is a range, e.g. [100, 120] tonne/day.

Interval uncertainty, which is also intervalness in this

study, originates from intrinsic inconsistent characteristics

and human cognitive limitations. System properties vary in

the planning period under disturbances of external influ-

encing factors and complexities of internal management

systems. The variation can be alleviated to a certain extent

through multi-dimensional meshing, but it is restricted by

the low availability of high-quality data. Meanwhile, the

accurate estimation of either finer-resolution data series or

tempo-spatial cumulative distributions is unachievable due

to the ineffectiveness of estimation techniques, the insuf-

ficiency of data monitoring, the unpredictability of system

noises, or other potential causes. As a result, properties of

system components are uncertain, and the only reliable

estimation may be a series of fluctuation ranges. LP

problems in which component properties are of interval

uncertainties are abbreviated as interval linear program-

ming (ILP) problems.

Multiple existing programming models including LP can

be used to characterize ILP problems, but the original

information is misrepresented in the modeling process. For

instance, when LP is applied to the above example, the daily

generation rate has to be estimated as a representative value,

e.g. the mid value (110 tonne/day). Regardless of what the

representative value is, valuable information, e.g. bound-

aries of uncertain properties, is neglected in characterizing

an ILP problem as an LP model. In addition, distribution-

based linear programming methods (DLP) (Luhandjula

2014) are also available for analyzing interval uncertainties.

The fluctuation range can be expressed as a random variable

or a fuzzy set when distributional information (e.g. proba-

bility densities or fuzzy memberships) is constructed based

on artificial assumptions. Nevertheless, the information

cannot be known through reliable means, which is the orig-

inal and representative feature of ILP problems. Imposing

nonexistent distributional information to uncertain proper-

ties would result in the mismatch between real-world ILP

problems and human-built DLP models.

It is desired to accurately reflect interval uncertainties of

system component properties and to incorporate them into

the decision-making process. To achieve it, interval linear

programming (Soyster 1973; Steuer 1981; Sengupta et al.

2001; Hladık 2012) is proposed on the basis of interval

analysis theories (Alefeld and Mayer 2000). Systematic

introduction of ILP can be found in papers such as (Moore

1979) and (Sengupta and Pal 2000). As the most repre-

sentative feature of ILP models, uncertainty in the pro-

gramming objective or constraints is expressed as an

interval that involves a set of real numbers within a range.

In this study, the interval is named as an interval set.

Related definitions are presented as follows.

Definition 1.1 An interval set (x±) is a closed and

bounded set of real numbers, of which the distributional

information is unknown for any real number in the set.

Definition 1.2 An interval matrix is a matrix whose

elements are interval sets, e.g. Y± = {yij
±}m9n where yij

± are

interval sets for i = 1, 2, …, m and j = 1, 2, …, n.

Definition 1.3 An interval vector is a one-dimensional

interval matrix, e.g. X± = (x1
±, x2

±, …, xn
±) where xi

± are

interval sets for i = 1, 2, …, n.

Definition 1.4 For an interval set (x±), the mid value

Mid(x±) = (x- ? x?)/2.

Definition 1.5 Any real number in interval set x±, e.g. x-

or x?, is a whitened value of x±. (For the convenience of

expressions, the event an interval set (x±) is whitened as a

real number (x) is denoted as x± F x in this study).

Through replacing real-valued coefficients in LP models

with interval sets, an ILP model can be generalized as

maximization ofC±X subject toA±XB b± and XC 0 where

C± = {cj
±}19n, A± = {aij

±}m9n, b± = {bi
±}m91, C±, A±

and b± are interval matrices or vectors, X = {xj}n91 is a

vector of real-valued decision variables xj (j = 1, 2, …, n),

and coefficients cj
±, aij

± and bi
± (i = 1, 2,…, m; j = 1, 2,…,

n) are interval sets that are independent with each other.

3 Model development

Interval-set coefficients cj
±, aij

± and bi
± (i = 1, 2,…, m;

j = 1, 2, …, n) in ILP models are independent of each

other, which governs effectiveness of existing ILP solution

methods for RESM. However, this independence may be

invalid for real-world ILP problems due to a multiplicity of

compositions of system costs or profits. Coefficients in the

objective function of ILP models may be of synchronic

interval uncertainties, performing as the intersection of

interval sets among coefficients.

For instance, the objective function of an ILPmodel is to

maximize f± = c1
±�x1 ? c2

±�x2 = (-50�d1± - 16�d2±)�x1 ?

(50�d1± ? 21�d3±)�x2 where d1
± = [1, 8], d2

± = [3, 9],

d3
± = [5, 10] and x1 and x2 are non-negative decision vari-

ables. If both d1
± in c1

± and c2
± are assumed to be independent,

c1
± = [-544, -98] and c2

± = [155, 610]. For any solution

(x1, x2), the objective function value ranges from-544�x1?
155�x2 to -98�x1 ? 610�x2. On the other hand, f± = 50�d1±-

(x2 - x1) - 16�d2±�x1 ? 21�d3±�x2 and -16�d2±�x1 ? 21�d3±-

x2 = [-144�x1 ? 105�x2, -48�x1 ? 210�x2]. If x2[ x1, we

have f± = [50�(x2- x1)- 144�x1? 105�x2, 400�(x2- x1)-

48�x1 ? 210�x2] = [-194�x1 ? 155�x2, -448�x1 ? 610�x2];
otherwise, f± = [-544�x1 ? 505�x2, -98�x1 ? 260�x2]. In
comparison with [-544�x1? 155�x2,-98�x1? 610�x2], both
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ranges [-194�x1? 155�x2,-448�x1? 610�x2] and [-544�x1
? 505�x2, -98�x1 ? 260�x2] are contracted since the con-

sideration of synchronic interval uncertainties. Synchronism

of interval sets dk
± (k = 1, 2, 3) complicates the process of

estimating ranges of the objective function and leads to

contraction of value ranges.

Neglecting synchronic effects of interval uncertainties in

the process of characterizing programming systems may

lead to misrepresentation of system characteristics, unac-

ceptability of solution feasibilities, ineffectiveness of

resource allocations, sacrifice of system profits, and unre-

liability of the decision support process. To mitigate this

challenge, an explicit expression of the mapping from in-

terval sets to interval-set coefficients is required for

reflecting the intersection of interval sets and synchronisms

of interval-set coefficients in the objective function. In-

terval functions as defined below are introduced to refine

the relationship between interval sets and coefficients.

Definition 2 An interval function g(�) is a mapping from

independent interval sets dk
± (k = 1, 2, …, r) to a depen-

dent interval set c± through interval arithmetic.

Let it be expressed as c± = g(d1
±, d2

±, …, dr
±) where

coefficients of g(�) are real numbers. It can be of various

forms, e.g., (1)
P

k[{1,2,…,r}(ak�dk±), (2)
P

k[{1,2,…,r}(ak�(-
dk
±)Pk), or 3)

P
k[{1,2,…,r-1}

P
l[{k?1,k?2,…,r}(ak�dk±�dl±)

where ak (k = 1, 2, …, r) are real numbers and where Pk

(k = 1, 2, …, r) are integers. Coefficient c± ranges from

{min (g(d1, d2,…, dr)) | dk
- B dk B dk

? for k = 1, 2,…, r} to

{max (g(d1, d2, …, dr)) | dk
- B dk B dk

? for k = 1, 2, …, r}.

Through expressing synchronic interval-set coefficients

cj
± (j = 1, 2, …, n) in the objective function of ILP models

as interval functions, a synchronic interval linear pro-

gramming (SILP) model is proposed as follows.

Max f� ¼ C�X ¼ G d�1 ; d
�
2 ; . . .; d

�
r

� �
X þHX ð1:1Þ

s:t: A�
i X ¼

X

j¼ 1; 2; ...;n

a�ij � xj� b�i ; i ¼ 1; 2; . . .; t t�mð Þ;

ð1:2Þ

bþi �b�i
� �

þ
X

j¼1;2; ...;n

aþij �a�ij

� �
[ 0; i¼ 1;2; . . .; t t�mð Þ;

ð1:3Þ

AiX ¼
X

j¼ 1; 2; ...;n

aij � xj � bi; i ¼ t þ 1; t þ 2; . . .;m;

ð1:4Þ
X� 0; ð1:5Þ

where X = (x1, x2, …, xn)
T is a vector of decision vari-

ables; C± [ {R±}19n; d1
±, d2

±,…, and dr
± are n independent

interval sets where dk
± = [dk

-, dk
?] and dk

?[dk
- for any k [

{1, 2, …, r}; G (d1
±, d2

±,…, dr
±) = {{gj(d1

±, d2
±,…,

dr
±)}19n|gj(�) is an interval function of d1

±, d2
±,…, and dr

±,

for j = 1, 2, …, n}; H = (h1, h2, …, hn) is a vector of real

numbers; and bi
- B bi

? and aij
- B aij

? for j = 1, 2, …, n and

i = 1, 2, …, t.

4 Constraints transformation

Coefficients in constraints (1.4) and (1.5) are real numbers

and can be effectively handled by LP methods (Dantzig

1947, 1963; Dantzig and Wolfe 1960). The key of con-

straint analysis is how to equivalently convert constraints

(1.2) into crisp forms subject to constraints (1.4) and (1.5).

Coefficients aij
± (i = 1, 2, …, t and j = 1, 2, …, n) and bi

±

(j = 1, 2, …, n) are interval sets. For any i [ {1, 2, …, t},

they can be whitened as any real number between bound-

aries aij
- and aij

? or bi
- and bi

?. Accordingly, the boundary

of constrained feasible region is not as crisp as that of

deterministic linear constraint (AX B b) and fluctuates

between a pair of borderlines.

Definition 3 For any constraint of inequalities (1.2), the

conservative boundary is A?X B b- and the optimistic

boundary is A-X B b? where A? = (a1
?, a2

?, … , an
?) and

A- = (a1
-, a2

-, …, an
-).

As stated in Lemma 1 (‘‘Appendix’’), RESM schemes

within the conservative boundary, i.e. ones satisfying

A?X B b-, are absolutely feasible, and those beyond the

optimistic boundary, i.e. ones satisfying A-X [ b?, are

infeasible. Conservative solutions satisfying inequality

A?X B b- are feasible regardless of the whitened values of

interval-set coefficients. Scheme feasibility and system

security are maximized, while higher system profits are

sacrificed. The solution is only desired for decision makers

who would not like to take any likelihood of constraint

violation. The tradeoff between system security and profit

deflects to the former one excessively. On the contrary, the

optimistic boundary corresponds to the largest feasible

region, and the solution, as the most optimistic one, max-

imizes system profits. The solution is infeasible for almost

any combination of whitened values of interval sets unless

A± F A- and b± F b?. The likelihood of constraint

violation is maximized, and the tradeoff between sys-

tem security and profit deflects to the latter one

disproportionately.

The feasible region constrained by the conservative

boundary can be named as the absolutely feasible region,

while that constrained by the optimistic boundary be the

relatively feasible region. They are denoted as R- -

= {X = (x1,x2,…,xn)|A
?X B b- and X C 0} and

R? = {X = (x1, x2, …, xn)|A
-X B b? and X C 0},

respectively. The difference between the two regions is

Stoch Environ Res Risk Assess (2018) 32:435–456 439
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named as the softly feasible region referring to (Huang

et al. 1992). Denote the softly feasible region as Rs, and let

X be any softly feasible solution in Rs. Hence, Rs = R? -

R- = {X = (x1, x2, …, xn)|X C 0; A?X[b-; A-X B b?;

(b? - b-) ?
P

j=1,2,…,n(aj
? - aj

-)[ 0}.

In real-world management problems, decision makers

may prefer to a balanced tradeoff between system profits

and security. Solutions of uncertain feasibilities are valu-

able for decision making under uncertainties, at least for

ones who do not want to take extremely high or low con-

straint-violation likelihoods. The most desired solution for

decision makers who are diversified in acceptability of

constraint violation risks may be in Rs. To gain insight into

feasibility characteristics of solutions in Rs, a quantification

approach is proposed based on analysis of geometric

properties of the region. Let X be any softly feasible

solution in Rs.

Definition 4.1 The solution-boundary distance between

X and the conservative boundary of Rs, denoted by dXT, is |

A?X - b-|/((A?)(A?)T) = (A?X - b-)/((A?)(A?)T).

Definition 4.2 The solution-boundary distance between

X and the optimistic boundary of Rs, denoted by dXL, is |

A-X - b?|/((A-)(A-)T) = (b? - A-X)/((A-)(A-)T).

It is implied by Proposition 1 (‘‘Appendix’’) that solu-

tions in Rs cannot be on both the conservative boundary

and the optimistic one at the same time. If this does not

hold feasibility of solutions around the intersection of two

boundaries would be highly sensitive to fluctuations of

interval coefficients. An absolutely feasible solution may

become absolutely infeasible due to a tiny oscillation of

coefficients. Non-intersection of the two boundaries avoids

a potential issue of system security.

Suppose X is any solution in Rs. As X approaches

boundary A?X = b-, the likelihood of constraints being

violated is decreased. When A?X = b- or dXT = 0, the

likelihood is zero. As X approaches boundary A-X = b?,

the likelihood is gradually increased. When A-X = b?,

X is infeasible for all combinations of whitened values of

coefficients (b±, A±) except (b?, A-). If dXT\0, we have

A?X\b- and X is feasible absolutely. If dXL\0, we have

A-X[ b? and X is infeasible absolutely. Therefore, it is

revealed that feasibility of solutions in Rs is closely related

to geometric distances dXT and dXL. Based on the effec-

tiveness of dXT and dXL at reflecting likelihoods of con-

straint violation, the constraint violation likelihood (CVL)

is proposed to characterize the likelihood of interval-co-

efficient constraints (A±X B b±) being violated.

Definition 5 For constraint Ai
±X B bi

± (i = 1, 2,…, t; t B

m), the constraint violation likelihood (CVLi) is dXT/(dXT ?

dXL).

From formulations of dXT and dXL we have CVLi = [(-

Ai
?X - bi

-)/((Ai
?)(Ai

?)T)]/{[(Ai
?X - bi

-)/((Ai
?)(Ai

?)T)] ?

[(bi
? - Ai

-X)/((Ai
-)(Ai

-)T)]} for any i. Parameter CVLi has

a series of properties that can facilitate analysis of con-

straint violation risks under interval uncertainties. It ranges

from 0 to 1 because of non-negativity of dXT and dXL. It

equals to zero if and only if dXT = 0, i.e. aij
± F aij

? (j = 1,

2, …, n) and bi
±
F bi

-. The boundary of region Rs coin-

cides with the conservative boundary (Ai
?X = bi

-). Solu-

tions are absolutely feasible under intervalness. Constraints

of SILP models would not be violated in this case. As

another extreme case, it equals to one if and only if

dXL = 0, i.e. aij
± F aij

- (j = 1, 2, …, n) and bi
± F bi

?. The

softly feasible region extends to the optimistic boundary,

i.e. Ai
-X = bi

?. Feasibility of solutions holds only for the

optimistic combination of whitened values of coefficients,

but not for others. Parameter CVLi is a strictly monotonic

increasing function of dXT and is a strictly monotonic

decreasing function of dXL. Namely, it increases with dXT
and decreases with dXL.

As a function of dXT and dXL, the functional form of

CVLi varies with multiple factors such as preferences of

decision makers, the importance of and potential inde-

pendence of constraints, and interrelations of coefficients.

The functional form in definition 5 is only one of many

alternatives. It can be in other forms that also satisfy the

above properties. For example, function dXT/(dXT ? dXL)

belongs to a family of alternative functions g(dXT)/(g(dXT)

? g(dXL)) where r C 0, g() C 0, g (r) = 0 if and only if

r = 0, and g(r) increases with r. Other functions in this

family can be introduced to quantify CVLi. In this study,

CVLi is defined as a relatively simple function of dXT and

dXL in order to ease difficulties of solving SILP models.

Selection of optimal functional forms will be discussed in

future studies.

The maximal acceptable value of CVLi, denoted as

CVLimax (i = 1, 2, …, t; CVLimax [ [0, 1]), is determined

for all constraints in SILP models by decision makers in

practice. Ones pursuing higher system optimality take

higher CVLimax. Ones preferring to mitigate constraint

violation risks take relatively low values of CVLimax even

though high system optimality is sacrificed. Under the

same value of CVLimax, costs resulting from constraint

violation may vary with constraints. A rational decision

maker would determine higher CVLimax for constraints of

lower constraint-violation costs, and lower values for

constraints of higher constraint-violation costs. Through a

comprehensive consideration of all related factors, decision

makers provide a group of CVLimax for constraints (1.2).

Note that, while parameter CVLi is introduced to quantify

the likelihood of constraint violation, parameter CVLimax

(i = 1, 2, …, t) is defined for representing the maximal
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acceptable constraint-violation likelihood, i.e. the maximal

values of CVLi, for any constraint.

Theorem 1 For any i [ {1, 2, …, t}, the ith constraint in

SILP model (1) is equivalent to

1 � CVLimaxð Þ A�
i

� �
A�
i

� �T
Aþ
i þ CVLimax Aþ

i

� �
Aþ
i

� �T
A�
i

h i

X� 1 � CVLimaxð Þ A�
i

� �
A�
i

� �T
b�i þ CVLimax Aþ

i

� �
Aþ
i

� �T
bþi

h i
:

ð2Þ

Proof (‘‘Appendix’’).

Denote [(1 - CVLimax)(Ai
-)(Ai

-)TAi
? ? (CVLimax)(-

Ai
?)(Ai

?)TAi
-] and [(CVLimax)(Ai

?)(Ai
?)Tbi

? ? (1 -

CVLimax)(Ai
-) (Ai

-)Tbi
-] as Ai(CVLimax) and bi(CVLimax),

respectively. Inequality (2) is simplified as Ai(CVLimax)X B

bi(CVLimax). The jth (j = 1, 2, …, n) element of vector

Ai(CVLimax), i.e. [(1 - CVLimax)(Ai
-)(Ai

-)Taij
? ?

(CVLimax)(Ai
?)(Ai

?)Taij
-], and bi(CVLimax) are deterministic

linear functions of CVLimax. They are valued as real

numbers for any given CVLimax. All coefficients in

inequality (2) are real numbers instead of interval sets.

Accordingly, SILP model (1) can be reformulated as the

following model (named as SILP-2).

Max f� ¼ C�X ¼ G d�1 ; d
�
2 ; . . .; d

�
r

� �
X þHX ð3:1Þ

s.t. Inequalities (1.3)–(1.5),

Ai CVLimaxð ÞX� bi CVLimaxð Þ; i ¼ 1; 2; . . .; t t�mð Þ;
ð3:2Þ

Proposition 2 For any i [ {1, 2, …, t}, suppose X [ Rs

and CVLimax1 and CVLimax2 are any two values of CVLimax.

If CVLimax1 \ CVLimax2 and Ai(CVLimax1)X B bi(-

CVLimax1), then Ai(CVLimax2)X B bi(CVLimax2).

Proof (‘‘Appendix’’).

Remark 1 (‘‘Appendix’’): For any CVLimax [ [0, 1] and

any i [ {1, 2, …, t}, Lij(CVLimax) [ [aij
-, aij

?] and Ri(-

CVLimax) [ [bi
-, bi

?] where Lij(CVLimax) = [(1 -

CVLimax)�aij?�(Ai
-)(Ai

-)T ? (CVLimax)�aij-�(Ai
?)(Ai

?)T]/[(1

- CVLimax)�(Ai
-)(Ai

-)T ? (CVLimax)�(Ai
?)(Ai

?)T] and Ri(-

CVLimax) = [(CVLimax)�bi?�(Ai
?)(Ai

?)T ? (1 - CVLimax)�-
bi
-�(Ai

-)(Ai
-)T]/[(1 - CVLimax)�(Ai

-)(Ai
-)T ?

(CVLimax)�(Ai
?)(Ai

?)T].

For the ith (i = 1, 2, …, t) constraint (Ai
±X B bi

±) in

SILP model (1), as CVLimax increases from zero to one,

constraints are violated at higher likelihoods and the

boundary of the feasible region is extended. Meanwhile,

the likelihood of achieving higher system optimality is

enhanced. This implies that CVLimax is capable of reflect-

ing the tradeoff between constraint violation and system

optimality. Does the capability hold for cases where

distributional information of uncertain coefficients in con-

straints is known?

Under interval uncertainty, the only reliable estimation

of an uncertain coefficient is a range that involves almost

all potential values of the coefficient. It can be assumed

that the range, which is expressed as an interval set in SILP

models, is the definition domain of the distribution function

under distribution-known uncertainties such as randomness

and fuzziness. Let s± be any interval set in constraints of

SILP models, š be the corresponding uncertain coefficient

under distribution-known uncertainties, and the potential

value of š be denoted as s. We have s± [ {aij
± (i = 1, 2, …,

t and j = 1, 2,…, n), bi
± (j = 1, 2,…, n)} and s- B s B s?.

Let ‘‘likelihood’’ be a generalized term to represent the

occurrence likelihood of an event. It is equivalent to

‘‘probability’’ under randomness, ‘‘membership’’ under

fuzziness, or other corresponding terms. The occurrence

likelihood of event (š = s) is expressed as LDF(s) which is

the likelihood density function of uncertain coefficient š. It

is the probability density function under randomness or the

fuzzy membership function under fuzziness. The cumula-

tive distribution of uncertain coefficient š is formulated as

CDF(). We have CDF(s) = $s-
s LDF(r)dr. Suppose s1 and

s2 are any two potential values of š. If s1 B s2, then

CDF(s1) B CDF(s2). Ranges of function CDF(s) are nor-

malized as [0, 1]. That is, CDF(s-) = 0 and CDF(s?) = 1.

For interval sets aij
± (i = 1, 2, …, t and j = 1, 2, …, n) and

bi
± (j = 1, 2, …, n) in SILP models, corresponding

cumulative distribution functions under distribution-known

uncertainties are expressed as Fij() and Gi(), respectively.

Let the likelihood of the ith constraint being violated be

denoted as DCVL(CVLimax).

Proposition 3 DCVL(CVLimax) =
Q

j[{1,2,…,n}{1 - Fij(-

Lij(CVLimax))}�Gi(Ri(CVLimax)) for any CVLimax [ [0, 1]

and any i [ {1, 2, …, t}.

Theorem 2 DCVL(CVLimax) \ DCVL(CVLimax) if

CVLimax1 \ CVLimax2 where CVLimax1 and CVLimax2 are

two levels of CVLimax.

Proof (‘‘Appendix’’).

As indicated in Theorem 2, DCVL(CVLimax) strictly

monotonically increases with CVLimax. It implies that

DCVL(CVLimax) and CVLimax are synergistic at quantifi-

cation of constraint violation likelihoods. Regardless of

distributional information of uncertain coefficients in con-

straints, CVLimax is effective at reflecting constraint viola-

tion under uncertainties. It is also helpful for analyzing

tradeoffs between constraint violation and system opti-

mum, which is independent with distributions of uncer-

tainties. This is because CVLimax is proposed based on

analysis of geometric properties of the softly feasible

region of SILP models under interval uncertainty.
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Fluctuation ranges of uncertain coefficients and thus the

geometric properties do not vary with distributional

information.

5 Objective-function transformation

The objective function of SILP-2 model (3) is to maximize

G(d1
±, d2

±,…, dr
±)X ? HX where G (d1

±, d2
±,…,

dr
±) = {{gj(d1

±, d2
±,…, dr

±)}19n|gj() are interval functions of

independent interval sets dk
± (k = 1, 2,…, r) for any j [ {1,

2, …, n}} and where H is a vector of real numbers. Sup-

pose dk is any whitened value of interval set dk
± for any k [

{1, 2, …, r}, i.e. dk
± ^ dk and dk[ [dk

-, dk
?] where k = 1,

2, …, r. For any combination of dk (k = 1, 2, …, r), the

objective function is a real-valued function, G(d1, d2,…,

dr)X ? HX, with respect to X. SILP-2 model (3) is trans-

formed to a deterministic linear programming problem.

The optimal solution can be obtained through the simplex

method (Dantzig 1947, 1963; Dantzig and Wolfe 1960). Its

optimality depends on dk (k = 1, 2, …, r). For any com-

bination of dk (k = 1, 2,…, r), the solution is optimal when

dk
± F dk (k = 1, 2, …, r), but hardly remains to be the

optimal one when dk
± F dk

0
(dk

0
[ [dk

-, dk
?]; dk

0
= dk; k = 1,

2, …, r). Thus, it is denoted as Xopt(d1, d2,…, dr) that can

reflect the dependency of solution optimality on whitened

values of interval sets, and is named as a locally optimal

solution. The optimal value of objective function equals to

G(d1, d2,…, dr)X
opt(d1, d2,…, dr) ? HXopt(d1, d2,…, dr). It

also depends on dk (k = 1, 2, …, r), so it is denoted as

fopt(d1, d2,…, dr) and named as a locally optimal objective

value.

The objective of this section is to identify a solution that

can achieve overall optimality of objective function (3.1)

under synchronic interval uncertainties. Let it be denoted

as Xopt where Xopt = (x1opt, x2opt, …, xnopt). Given solution

Xopt and any combination of dk (k = 1, 2, …, r), the

objective function value, denoted as fopt(d1, d2,…, dr),

equals to (G(d1, d2,…, dr) ? H) Xopt. Value of fopt(d1,

d2,…, dr) only depends on dk (k = 1, 2, …, r), which does

not hold for fopt(d1, d2,…, dr) that varies with both dk
(k = 1, 2, …, r) and Xopt(d1, d2,…, dr).

Remark 2 fopt(d1, d2,…, dr) C fopt(d1, d2,…, dr) for any

combination of dk (k = 1, 2, …, r).

Since Xopt(d1, d2,…, dr) is the optimal solution of SILP-

2 model (3) when dk
± F dk (k = 1, 2, …, r), objective

function (G(d1, d2,…, dr) ? H) X is optimized at solution

Xopt(d1, d2,…, dr). We can have (G(d1, d2,…, dr) ?

H) Xopt(d1, d2,…, dr) C (G(d1, d2,…, dr) ? H) Xopt, i.e.

fopt(d1, d2,…, dr) C fopt(d1, d2,…, dr). It implies that, in

comparison with desired solution Xopt that does not vary

with whitened values of interval sets, the locally optimal

solution (Xopt(d1, d2,…, dr)) is more capable of optimizing

the objective function for any combination of dk (k = 1, 2,

…, r).

Let fopt(d1, d2,…, dr) - fopt(d1, d2,…, dr) be denoted as

L(d1, d2,…, dr). It represents the loss of local optimality at

(d1, d2,…, dr) given solution Xopt. Based on Remark 2, we

can have L(d1, d2,…, dr) C 0 for any combination of dk
(k = 1, 2, …, r).

The overall loss of local optimality, as dk fluctuates

within [dk
-, dk

?] (k = 1, 2, …, r), can be expressed as $…$
L(d1, d2,…, dr) d(d1)…d(dr) based on the technique of

multidimensional integration. From independence of

Xopt(d1, d2,…, dr) and Xopt, we have $…$ L(d1, d2,…, dr)

d(d1)…d(dr) = $…$ fopt(d1, d2,…, dr) d(d1)…d(dr) - $…$
fopt(d1, d2,…, dr) d(d1)…d(dr). The first integral in the right

hand represents the overall local optimality, and the second

one represents the overall optimality under Xopt. The

desired solution (Xopt) can be obtained through indirectly

minimizing the overall loss of local optimality or directly

maximizing the overall optimality. Both methods are

equivalent since it is valid in most real-world programming

problems that the overall local optimality is deterministic

and bounded. Conventionally, interval coefficients in the

objective function are replaced with particular values in the

corresponding interval ranges, implying that the system

optimality under other combinations of coefficients is

neglected; in comparison, the introduction of multidimen-

sional integration can help identify an optimal solution that

reflects the overall optimality of the objective function

under synchronic interval uncertainties.

Let the feasible region of SILP-2model (3) be denoted as

RSILP-2. We have RSILP-2 = {X | [(1 - CVLimax)(Ai
-)(Ai

-)-
TAi

? ? CVLimax(Ai
?)(Ai

?)TAi
-]X B [(1 - CVLimax)(Ai

-)(-

Ai
-)Tbi

-?CVLimax(Ai
?)(Ai

?)Tbi
?] for i = 1, 2,…, t (tBm);

(bi
?- bi

-)?
P

j=1,2,…,n (aij
?- aij

-)[0 for i = 1, 2,…, t (tB

m); AiX B bi for i = t ? 1, t ? 2, …, m; X C 0}.

Definition 6 For any feasible solution of model (3), it is

an integrally optimal solution if $…$ fopt(d1, d2,…, dr)

d(d1)…d(dr) is maximized.

Remark 3 For SILP-2 model (3), the integrally optimal

solution (Xopt) is the solution of the following LP model.

Max
Xn

j¼1

� Z

. . .

Z

gj d1; d2; . . .; drð Þ d d1ð Þ. . .d drð Þ
� �

þ hj
Yr

k¼1

dþk � d�k
� �

" #)

xj ð4:1Þ
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s:t: 1 � CVLimaxð Þ A�
i

� �
A�
i

� �T
Aþ
i þ CVLimax Aþ

i

� �
Aþ
i

� �T
A�
i

h i
X

� 1 � CVLimaxð Þ A�
i

� �
A�
i

� �T
b�i þ CVLimax Aþ

i

� �
Aþ
i

� �T
bþi

h i
;

i ¼ 1; 2; . . .; t t�mð Þ;

ð4:2Þ

bþi � b�i
� �

þ
X

j¼ 1; 2; ...;n

aþij � a�ij

� �
[ 0;

i ¼ 1; 2; . . .; t t�mð Þ;
ð4:3Þ

AiX� bi; i ¼ t þ 1; t þ 2; . . .;m; ð4:4Þ
X� 0: ð4:5Þ

where CVLimax is the maximum constraint violation like-

lihood of the ith (i = 1, 2, …, t; t B m) interval-coefficient

constraint.

Previously, many definitions were developed to locate the

overall optimal solution under interval uncertainties. The

necessarily optimal solution of an ILP model where interval

uncertainties only exist in coefficients (C) in the objective

function is proposed in (Bitran 1980). As for sub-model SILP-

2 which is a mono-objective interval linear programming

problem, it is an ideal solution that can achieve overall

optimality of the objective function, and can be defined as a

feasible solution that there does not exist another feasible

solution such that the objective function ismore optimal for at

least one combinations of whitened values of C. It is related

with the integrally optimal solution proposed in this study.

Theorem 3 If the necessarily optimal solution exists for

SILP-2 model (3), it is equivalent to the integrally optimal

solution.

Proof (‘‘Appendix’’).

Objective function (4.1) can be further simplified in

particular cases. For instance, if intervalness does not exist

in the objective function (3.1), i.e., r = 0, model (4) is

equivalent to Max f ¼
Pn

j¼1 hjxjjX 2 RSILP�2

n o
. If H = 0,

the equivalent form of model (4) is Max f ¼
Pn

j¼1

n

R
. . .

R
gj d1; d2; . . .; drð Þ d d1ð Þ. . .d drð Þ

	 

xjjX 2 RSILP�2g . If

gj d1; d2; . . .; drð Þ ¼
Pr

k¼1 pjkd
�
k

� �
where coefficients pjk are

real numbers for any j or k, then the objective is to maxi-

mize
Qr

k¼1 dþk � d�k
	 
� �Pn

j¼1 hj þ
Pr

k¼1 pjk dþk þ d�k
� �

=2
	 


xj .

Under linearity of interval functions, it is equivalent to

optimize the mid value of the objective function, which

holds under either synchronic or non-synchronic interval

uncertainties. As demonstrated in followings, solutions do

not vary with synchronisms of interval sets in the objective

function of SILP models when interval functions are linear

polynomials of interval sets. If gj(d1, d2,…, dr) = dj
±

(j = 1, 2, …, n), the SILP model is degenerated to an ILP

model where interval sets are not synchronized. Objective

function (4.1) is transformed to maximize
Pn

j¼1

0:5
Qn

k¼1 dþk � d�k
� �

dþj þ d�j

� �h i
hj
Qr

k¼1 dþk � d�k
� �	 
n o

.

Nonlinearity in a number of real-world programming

problems can be decomposed as a series of polynomials

through techniques of Taylor or Fourier expansions. It is

possible that gj(d1
±, d2

±,…, dr
±) is a convex combination of

interval sets dk
± (k = 1, 2, …, r), i.e., gjðd1; d2; . . .; drÞ ¼

Psj
l¼1 pjl

Qr
k¼1ðd�k Þ

^
ejlk

	 

where ejlk is an integer for any j,

k, or l [ {1, 2, …, sj}. Objective function (4.1) is equivalent

to maximize
Pn

j¼1

Psj
l¼1 pjl

Qr
k¼1 ðdþk Þ

^ðejlk þ 1Þ�
	�	�

ðd�k Þ
^ðejlk þ 1Þ�=ðejlk þ 1Þ�g þ hj

Qr
k¼1 dþk � d�k

� �	 

�gxj.

Coefficients of objective function in SILP-2 model (4)

are real numbers rather than interval functions. Model (4)

is a deterministic linear programming problem. It can be

effectively solved by the simplex method (Dantzig

1947, 1963; Dantzig and Wolfe 1960). The solution is Xopt

where Xopt = (x1opt, x2opt, …, xnopt). The maximal multi-

dimensional integral of objective function involving syn-

chronic interval coefficients, named as the optimal integral,

equals to
Pn

j¼1

R
. . .

R
gj d1; d2; . . .; drð Þ d d1ð Þ. . .d drð Þ

	 

þ

�

hj
Qr

k¼1 dþk � d�k
� �	 


gxjopt. Accordingly, objective function

(1.1) ranges from {min ((G(d1, d2,…, dr) ? H) Xopt) | dk
- B

dk B dk
? for k = 1, 2, …, r} to {max ((G(d1, d2,…, dr) ?

H) Xopt) | dk
- B dk B dk

? for k = 1, 2, …, r}.

Based on the proposition of constraint violation likeli-

hoods and integrally optimal solutions, a violation-con-

strained interval integral (VCII) method is explored for

solving SILP models such as model (1). The structure and

significance of this study are presented in Fig. 1. In terms

of solving an SILP model, the proposed VCII method is

specified as follows.

Step 1 For any i [ {1, 2, …, t}, decision makers provide

an acceptable maximum constraint violation likelihood

CVLimax (0 B CVLimax B 1) of the ith interval-coefficient

constraint (1.2).

Step 2 Interval-coefficient constraints are transformed

into deterministic linear inequalities (3.2) that do not

involve interval-set coefficients.

Step 3 SILP model (1) is converted to SILP-2 model (3)

of which coefficients in the objective function are interval

functions.

Step 4 Synchronic interval-set coefficients are whitened

as real numbers based on the concept of the integrally

optimal solution and the technique of multidimensional

integration.

Step 5 SILP-2 model (3) is equalized as a deterministic

linear programming model (4) where all coefficients are

real numbers.

Step 6 Under a set of maximum constraint violation

likelihoods {CVLimax}i=1,2,…,t, an integrally optimal
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solution (Xopt) and corresponding optimal integral are

generated through the simplex method (Dantzig

1947, 1963; Dantzig and Wolfe 1960).

Step 7 The range of objective function (1.1) is obtained

through fopt
± = G(d1

±, d2
±,…, dr

±)Xopt ? HXopt.

6 Examplification

A simplified RESM problem is proposed to represent RESM

systems involving synchronic interval uncertainties in an

objective of system profit and interval uncertainties in

constraints of environmental loading capacity and resour-

ces availability. This problem is provided to demonstrate

advantages of the proposed SILP method as well as the

detailed procedures of the VCII algorithm. Such a problem

can be formulated as the following SILP model:

Maxf� ¼ ð�50 � d�1 � 16 � d�2 Þ � x1 þ ð50 � d�1 þ 21 � d�3 Þ
� x2

ð5:1Þ

s:t: �2:13; �1:91½ �x1 þ 0:96; 1:18½ �x2 � 1:89; 2:10½ �;
ð5:2Þ

�1:10; �0:94½ �x1 þ 2:85; 3:04½ �x2 � 17:35; 19:91½ �;
ð5:3Þ

0:97; 1:12½ �x1 þ 0:88; 1:07½ �x2 � 15:06; 16:47½ �; ð5:4Þ
x1 � 0; x2 � 0; ð5:5Þ

where d1
± = [1, 8], d2

± = [3, 9], and d3
± = [5, 10].

Step 1 Suppose the maximum constraint violation like-

lihoods for all constraints, denoted as CVLimax where i = 1,

2 and 3, are equal to any element in set {0, 0.1, 0.2,…, 0.9,

1}. That is, CVLimax = CVLmax for any i 2 {1, 2, 3} and

v 2 {0, 0.1, 0.2, …, 0.9, 1}.

Step 2 For any interval-coefficient constraint, general-

ized as a1
±x1 ? a2

±x2 B b±, it is equivalent with (1 -

CVLmax)[(a1
-)2 ? (a2

-)2](a1
?x1 ? a2

?x2) ? CVLmax[(a1
?)2 ?

(a2
?)2](a1

-x1 ? a2
-x2) B (1 - CVLmax)[(a1

-)2 ? (a2
-)2]b- ?

CVLmax[(a1
?)2 ? (a2

?)2]b?. Correspondingly, deterministic

linear constraints are
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�10:426� 0:311CVLmaxð Þx1
þ 6:441 � 1:602CVLmaxð Þx2 � 10:317
þ 0:268CVLmax ð6:1Þ

�8:773� 2:365CVLmaxð Þx1
þ 28:371 þ 0:486CVLmaxð Þx2 � 161:919
þ 39:674CVLmax ð6:2Þ

1:921 þ 0:406CVLmaxð Þx1
þ 1:835 þ 0:276CVLmaxð Þx2 � 25:832
þ 13:684CVLmax ð6:3Þ

Step 3 SILP model (5) is converted to the maximization of

f± = (d1
± ? d2

±)x1 ? (d1
± ? d3

±)x2 subject to inequalities

(6.1), (6.2), (6.3) and (5.5). Only coefficients in the

objective function are synchronic interval functions.

Step 4 The integrally optimal solution can be obtained

from maximizing
Pn

j¼1

R
. . .

R
gj d1; d2; . . .; drð Þ d d1ð Þ. . .

	�

d drð Þ� þ hj
Qr

k¼1 dþk � d�k
� �	 


gxj subject to deterministic

feasible region. Objective function f± = (d1
± ? d2

±)x1 ?

(d1
± ? d3

±)x2 is transformed to deterministic inequality

-471870x1 ? 562275x2 that is equivalent with -642x1 ?

765x2.

Step 5 SILP model (5) is further reduced into a deter-

ministic linear programming model, i.e. maximization of

the objective function f = - 471870x1 ? 562275x2 subject

to inequalities (6.1), (6.2), (6.3) and (5.5), where all coef-

ficients are real numbers.

Step 6 Corresponding to various constraint violation

likelihoods from 0 to 1, a series of integrally optimal

solutions (x1opt and x2opt) and corresponding optimal inte-

gral are obtained (Table 1; Fig. 2) through the simplex

method (Dantzig 1947, 1963; Dantzig and Wolfe 1960).

Step 7 Since x2opt[x1opt for any CVLmax 2 {0, 0.1, 0.2,

…, 0.9, 1}, the lower boundary of the objective function

(fopt
- ) is equal to 50�(x2opt - x1opt)�d1- - 16�d2?�x1opt ?

21�d3-�x2opt, while the upper one (fopt
? ) is 50�(x2opt -

x1opt)�d1? - 16�d2-�x1opt ? 21�d3?�x2opt. In Table 1 and

Fig. 1, both boundaries and the mid values of the objective

function are presented.

It is indicated in Table 1 that CVLmax is effective at

quantifying the likelihood of interval constraints being

violated. The integral of the objective function with syn-

chronic interval-set coefficients is helpful for presenting

the overall optimality of the objective function with respect

to independent interval sets. As CVLmax increases from 0 to

1, the optimal integral of the interactive-interval-coeffi-

cient objective function with respect to independent in-

terval sets monotonically increases from 2274673 to

3260800 (see Table 1). The lower and upper boundaries of

the objective function also increase from -670.742 and

3765.536 to -184.808 and 4621.270 monotonically (see

Table 1). This is mainly because CVLmax is defined for

quantifying the likelihood at which an interval-coefficient

constraint is violated. The higher the value of constraint

violation likelihoods is, the higher the likelihood of con-

straint being violated is, and the broader the feasible region

is. Due to the expansion of the feasible region, the value

ranges of the objective function are increased. As a result,

the boundaries, the mid value as well as the optimal inte-

gral of the objective function monotonically increase with

constraint violation likelihoods.

7 Discussion

7.1 Constraint violation risks

VCII is effective at reflecting constraint violation risks

under interval uncertainties. It is verified by a comparison

of VCII and existing ILP methods based on transformation

Table 1 Solutions of model

(5)** through violation-

constrained interval integral

analysis

CVLimax Optimal integral F_lower F_upper X1 X2 F_mean

0.0 3.250E?05 426.633 2668.161 3.135 6.677 1547.397

0.1 3.263E?05 429.376 2678.203 3.133 6.691 1553.789

0.2 3.276E?05 432.126 2688.256 3.131 6.706 1560.191

0.3 3.290E?05 434.884 2698.319 3.128 6.721 1566.602

0.4 3.303E?05 437.649 2708.392 3.125 6.735 1573.021

0.5 3.317E?05 440.422 2718.475 3.123 6.750 1579.449

0.6 3.330E?05 443.202 2728.568 3.120 6.765 1585.885

0.7 3.344E?05 445.989 2738.671 3.117 6.779 1592.330

0.8 3.357E?05 448.784 2748.783 3.115 6.794 1598.783

0.9 3.371E?05 451.586 2758.904 3.112 6.808 1605.245

1.0 3.385E?05 454.395 2769.035 3.109 6.823 1611.715

CVLimax represents the maximum constraint violation likelihood; f_lower, f_upper and f_mean represent the

lower boundary of, the upper boundary of, and the mean value of objective function under interval

uncertainties, respectively
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of original SILP model (5). To eliminate disturbances of

interval uncertainties in the objective function on con-

straints, interval sets in objective function (5.1) are whi-

tened as mid values. Objective function (5.1) is

transformed as the maximization of a deterministic func-

tion. Namely, f = (-50�d1mid - 16�d2mid)�x1 ? (50�d1mid ?

21�d3mid)�x2 where d1mid = (1 ? 8)/2 = 4.5, d2mid = (3 ?

9)/2 = 6, and d1mid = (5 ? 10)/2 = 7.5. Accordingly,

SILP model (5) is reformulated as the maximization of

f = - 321�x1 ? 382.5�x2 subject to inequalities (5.2)–(5.5).

Let the model after reformulation be denoted as SILP-C.

Interval uncertainties only exist in constraints (5.2)–

(5.4) and lead to intervalness of decision variables and of

objective function values. Many existing methods (Rom-

melfanger et al. 1989; Levin 1994; Maqsood and Huang

2003) excluding VCII are available for solving the SILP-

C model. Among them, representative ones include the

robust optimization (RO) (Ben-Tal et al. 2009), the best-

and-worst approach (BAW) (Tong 1994), and the interval-

solution method (IS) (Huang et al. 1992). Corresponding

solutions are presented in Fig. 2. RO can generate a robust

solution that is feasible for any combination of whitened

values of interval sets in constraints and that is optimal for

at least one combination. It is (3.135, 6.677) for the SILP-

C model, and corresponds to a case of VCII in which CVL

equals to zero. A pair of solutions that correspond to the

best objective function value and the worst one can be

obtained through two independent LP sub-models in BAW.

For the SILP-C model they are (3.135, 6.677) and (2.618,

7.996) which match the lowest and the highest constraint

violation likelihoods in VCII. The worst solution in BAW,

i.e. (3.135, 6.677), is identical with the robust solution in

RO. Through the IS method two sets of deterministic

solutions, i.e. (2.891, 7.940) and (2.845, 6.737), can be

obtained for optimistic and pessimistic decision makers,

respectively. Coupling of them generates interval-set

solutions ([2.845, 2.891], [6.737, 7.940]). The boundaries

of decision variables x1 and x2 and the objective function

f under interval uncertainties are contracted from [2.618,

3.135], [6.677, 7.996] and [1547.397, 2218.231] in VCII to

[2.845, 2.891], [6.737, 7.940] and [1663.595, 2108.831] in

IS for achieving continuity of decision space. The
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contraction can be achieved through adjusting values of

constraint violation likelihoods in VCII. It is indicated that,

for ILP models in which interval uncertainties only exist in

constraints, solutions obtained from RO, BAW or IS are

particular cases of VCII. These existing methods can only

provide decision makers with schemes under particular

levels of constraint violation risks. The detailed tradeoff

between constraint violation risks and system optimality

cannot be reflected, which is mitigated in VCII.

7.2 Interval uncertainties in constraints

In addition to RO, BAW and IS, distribution-based linear

programming methods such as chance-constrained pro-

gramming (CCP) (Cheng et al. 2009) are also available to

address interval uncertainties in constraints of ILP models.

Interval uncertainties are artificially assumed as normally

distributed random variables in CCP. Distributional func-

tions of uncertain properties are constructed based on the

theory that, for standard normal distributions, approxi-

mately 99.75% of sample values fall within three standard

deviations of the mean. The SILP-C model is randomized

as a stochastic LP model in which coefficients in both sides

of constraints are random variables. Let the model be

denoted as SILP-R. Constraints in the randomized ILP

model is transformed to deterministic inequalities given

acceptable levels of constraint violation probabilities (pi).

The simplex method is employed to obtain solutions under

a series of pi. As for the SILP-R model, all solutions

obtained from CCP are shown in Fig. 3. It is indicated that

the tradeoff between constraint violation risks and system

optimality can be reflected in CCP as VCII does. CCP can

provide distributional information of constraint violations,

which is unachievable for VCII. However, the reliability of
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CCP is only accepted under ideal conditions. That is,

sufficient evidence can support the assumption that

uncertain properties are normally distributed. Besides, the

assumed random distributions deviate from original inter-

val uncertainties. These distributions do not exist and are

artificially added. Furthermore, the VCII method can be an

alternative of CCP if these assumptions are acceptable in

particular cases, which was stated in Theorem 2. As shown

in Fig. 3, ranges of decision variables x1 and x2 and

objective function f in the SILP-R model are [2.683, 3.002],

[7.048, 7.845] and [1732.310, 2139.473], respectively, as pi
varies within [0.01, 0.99]. All of them are contracted in

comparison with VCII solutions. Although these ranges can

be enlarged in CCP through expanding the value range of

pi, e.g. from [0.01, 0.99] to [0.0001, 0.9999], the reliability

of normal-distribution assumptions decreases sharply as pi
approaches boundaries (0 and 1). It is because relatively

low sample sizes and high instabilities of uncertain prop-

erties at tails of normal distributions may result in low

distribution estimation efficiencies. Under almost any

combination of constraint violation probabilities, the cor-

responding CCP solutions can be obtained through VCII. In

addition, VCII does not rely on distributional forms, while

CCP does. It is particularly meaningful when distributions

of uncertain properties are too irregular or unstable to be

precisely formulated. In these cases, VCII is more reliable

than CCP for decision making under uncertainties.

7.3 Overall optimality of objective function

The proposed VCII method is capable of achieving overall

optimality of the objective function in SILP models under

interval uncertainties. To clarify it, a comparison between

VCII and existing ILP methods (e.g., BAW, RO and IS) is

conducted based on the transformation of original SILP

model (5). Interval sets in constraints (5.2)–(5.4) are whi-

tened as mid values for eliminating influences of interval-

set synchronisms on the objective function. Interval-coef-

ficient constraints (5.2)–(5.4) are transformed as deter-

ministic inequalities (7.2)–(7.4). Meanwhile, interval

functions in the objective function are replaced with cor-

responding value ranges under independence of interval

sets. Accordingly, SILP model (5) is transferred to an ILP

model as follows where interval sets only exist in the

objective function.

Max f ¼ �544; �98½ � � x1 þ 155; 610½ � � x2 ð7:1Þ
s:t:� 2:02x1 þ 1:07x2 � 1:995; ð7:2Þ
�1:02x1 þ 2:945x2 � 18:63; ð7:3Þ
1:045x1 þ 0:975x2 � 15:765; ð7:4Þ
x1 � 0; x2 � 0: ð7:5Þ

The solutions of model (7) are presented in Fig. 4. The

optimal solution is (2.894, 7.328) when VCII is employed.
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Correspondingly, the objective function ranges from

-438.571 to 4186.687, and the integrally optimal solution

equals to 3.803E?08 under interval uncertainties of

objective-function coefficients. Solutions are identical for

BAW and IS, and RO corresponds to the worst scenario in

BAW or the pessimistic scenario in IS. The integrally

optimal solution reflects the overall optimality of the

objective function as coefficients fluctuate within interval

sets. In comparison with VCII, the integrally optimal

solution in BAW, IS and RO is significantly decreased. The

mid value of objective function (7.1) in VCII is higher than

that in any existing ILP methods, which also reflects the

effectiveness of VCII at achieving overall optimality.

Through construction of two sub-models in existing ILP

methods two sets of solutions are obtained, i.e. (6.941,

8.730) and (0, 1.864). The former sub-model focuses on the

upper bound of objective function, while the latter one on

the lower bound. For either of cases the aim is to realize

local optimality rather than overall optimality. As a result,

the upper bound of (7.1) reaches 4645.069 at the cost of

decreased lower-bound values. The upper bound is sacri-

ficed, decreasing from 4645.069 to 1137.336, for maxi-

mizing the lower bound. Thus, it is indicated that VCII is

effective at achieving overall optimality of the objective

function in ILP models.

7.4 Synchronism of interval sets

Synchronisms of interval sets in the objective function of

SILP models can be addressed through the proposed VCII

method. To analyze such an effect, a comparison between

VCII and existing ILP methods is conducted on the basis of

a modification of SILP model (5). Interval sets in con-

straints (5.2)–(5.4) are whitened as mid values for eradi-

cating disturbances of interval uncertainties in constraints.

Objective function (5.1) remains. The modified model can

be formulated as follows.

Max f� ¼ ð�50 � d�1 � 16 � d�2 Þ � x1 þ ð50 � d�1 þ 21

� d�3 Þ � x2
ð8:1Þ

s:t:Inequalities 7� 2ð Þ � 7� 5ð Þ: ð8:2Þ

The synchronism of interval sets dk
± (k = 1, 2, 3) in the

objective function is neglected in one case, while not in

another case. VCII is employed to solve model (8) in both

cases. Solutions are presented in Table 2. In the first case,

the synchronic interval set (d1
±) is taken as two unsyn-

chronized ones. As a result, four interval sets coexist in the

objective function (8.1). The solution is (2.894, 7.328), the

objective function value ranges from -438.571 to

4186.687, and the integrally optimal solution is

2.755E?06. In the second case, the synchronic effect of

interval set (d1
±) is kept. The solution from VCII does not

change because of linearity of interval functions in the

objective function (5.1) or (8.1). As a general rule, the

synchronism of interval sets in the objective function of

SILP models does not affect VCII solutions when interval

functions in the objective function are linear polynomials

of synchronic interval sets. This rule can hardly hold if

interval functions are nonlinear, especially high-order,

functions of synchronic interval sets. In the second case,

the boundary of the objective function (8.1) is [574.417,

3173.699] and the integrally optimal solution is

3.936E?05. When the synchronism is neglected the region

in which uncertain coefficients fluctuate would be enlarged.

Even given the same solution, the boundary of the objec-

tive function would be expanded under interval uncer-

tainties. The integrally optimal solution, which reflects the

overall optimality of the objective function under interval

uncertainties of coefficients, would be increased. As for

model (8), the boundary expands to [-438.571, 4186.687]

and the integrally optimal solution increases to

2.755E?06. Nevertheless, the expanded part of the

boundary, i.e. [-438.571, 574.417) and (3173.699,

4186.687] for model (8), is unachievable due to synchro-

nism of interval sets in the objective function. Neglecting

synchronism of interval sets in the objective function of

SILP models, as existing ILP methods do, would lead to

significant deviations in the estimation of programming

objective boundaries under intervalness. No matter whether

the programming objective is to achieve the maximum or

the minimum the lower boundary would be underestimated

and the upper one would be overestimated. The deviated

boundary implies incorrect scientific support to decision

makers, and additional costs may be required to tackle with

unreliable management schemes. Under nonlinearities of

interval functions, the obtained solutions may be com-

pletely infeasible for constraints and lead to abnormally

Table 2 Effects of

synchronism on solutions of

model (8)

Case F_lower F_upper X1 X2 Optimal integral

VCII(Syn) 574.417 3173.699 2.894 7.328 3.936E?05

VCII(Unsyn) -438.571 4186.687 2.894 7.328 2.755E?06

f_lower and f_upper are the lower boundary of and the upper boundary of the objective function,

respectively; VCII represents the method of violation-constrained interval integral analysis; Synchronisms

of interval uncertainties are taken into account in VCII(Syn), while not in VCII(Unsyn)
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high penalties due to the neglecting of such an effect in

existing ILP methods.

7.5 Comparisons with existing methods

SILP problems are extensions of LP problems. Extended

features include interval uncertainties of system component

properties and synchronic effects of these uncertainties. For

SILP problems there are many alternative decision support

techniques. In addition to the SILP method proposed in this

study, representative ones consist of LP, RO, ILP (e.g.

BAW and IS) and DLP (e.g. CCP and FRP). In the process

of modeling SILP problems, interval uncertainties are

misinterpreted in both LP and DP. Fluctuation ranges of

uncertain properties are represented as averaged values in

LP, leading to the missing of original information that is

valuable. In DP, distributional information of uncertain

properties, which is originally unknown due to lack of

reliable data and technical support, is imposed based on

artificial assumptions. Irrespective of original information

of interval uncertainties in SILP problems, the measure of

either LP or DLP can be hardly replied on. In contrast, RO

and ILP are capable of reflecting these uncertainties.

However, very few studies in RO and ILP focus on char-

acterization of synchronic effects of interval uncertainties.

Failure in incorporating interval uncertainties and their

synchronisms into the modeling process would signifi-

cantly decrease the reliability of decision support efforts.

This challenge is mitigated through the proposition of in-

terval functions in SILP models.

In terms of solving SILP models, existing methods such

as Monte Carlo Simulation (MCS), LP, RO, BAW, IS and

CCP are not reliable due to failure in reflecting realities.

Even though these methods can be enforced to do it, the

solving process is criticized in many aspects.MCS relies on

distributions of uncertain coefficients. They are unknown

for SILP models, which is one of the reasons that ILP and

SILP models emerge. Heavy computational loads also

restrict the applicability of MCS for large-scale program-

ming problems. Under interval uncertainties, boundaries of

decision variables and of objective function values cannot

be provided in LP. Only a few of specific decision

schemes, e.g. the robust one in RO, the worst and best ones

in BAW and the optimistic and pessimistic ones in IS, are

focused on the methods of RO, BAW and IS. These

schemes may be acceptable for DMs under particular

(especially extreme) conditions, but cannot be desired for

all DMs who are diversified in acceptability of constraint

violation risks and in expectation of system optimality. The

overall optimality of the objective function under interval

uncertainties is unachievable for existing methods. More-

over, synchronism of interval sets in the objective function

is neglected in the solving process. Schemes may deviate

far away from desired ones. It is of high likeliness that the

system profit is over- or under-estimated, which may

misdirect decision makers. Execution of corresponding

schemes may result in a variety of challenges in real-world

cases such as ineffective allocation of resources, a decrease

of system optimality, violation of constraints, and unex-

pectedly high costs of recourse measures. These challenges

are overcome to a certain extent in the developed VCII

method.

To sum up, comparisons between SILP and selected

existing methods in this study reveal the effectiveness of

SILP in multiple aspects. In addition to interval uncer-

tainties of component properties in linear programming

systems, synchronic effects of interval uncertainties in the

programming objective can also be reflected through

proposition of interval functions in SILP models. Since

geometric features of feasible regions under interval

uncertainties are independent with distributions of coeffi-

cients, constraint violation likelihoods are proposed for

quantifying violation of constraints based on the geometric

analysis. Analysis of the tradeoff between constraint vio-

lation likelihoods and system optimality is enabled in the

developed VCII algorithm. Significant potential negative

influences of synchronic interval uncertainties, which may

lead to ineffective allocation of resources, a decrease of

system optimality, violation of constraints and unexpect-

edly high costs of recourse measures in real-world prob-

lems, are disclosed based on numerical examples and are

mitigated in VCII. The proposition of multidimensional

interval integration in VCII achieves the overall optimality

of SILP problems under synchronic interval uncertainties.

The provision of integrally optimal solutions associated

with a variety of constraint violation likelihoods facilitates

risk analysis and management of SILP problems.

Furthermore, the SILP model and the VCII method

exploit a framework of addressing synchronisms of

uncertainties in programming problems. As for other types

of uncertainties, e.g. randomness or fuzziness, the syn-

chronic effect also exists in real-world management prob-

lems. It is a particular case of interactions or dependence of

these uncertainties. The representative feature is that this

interaction is easily identified. Depending on the frame-

work of this study, synchronisms of randomness or fuzzi-

ness can be refined as functional forms, and be

incorporated into the optimization process. Based on con-

straint violation analysis, multidimensional integration of

synchronic probabilistic or possibilistic distributions is

helpful for providing decision makers with the overall

optimal management schemes. A series of disasters due to

neglecting synchronisms of intervalness, randomness or

fuzziness in decision support processes can be mitigated,

which is the most significant contribution of this study.
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7.6 Potential extensions of SILP

The proposed SILP method in this study is the first attempt

to integrate interval functions, geometric analysis, and

interval integral together for providing reliable decision

support for RESM under synchronic interval uncertainties.

This method is only feasible for RESM problems that can

be formulated as LP models with synchronic interval

coefficients, and is deficient in some aspects including but

not limited to the followings. The feasibility of the devel-

oped method for SILP problems depends on one condition

that system component properties are uncertain with

unknown distributions. For problems in which uncertain-

ties do not exist or distributional information is known,

SILP cannot be the most desired decision support tool.

SILP models are helpful for addressing synchronic interval-

set coefficients in the objective function. Synchronisms of

interval, random or fuzzy coefficients in constraints and the

objective function cannot be reflected if they exist. In VCII,

acceptable constraint violation likelihoods of interval-co-

efficient constraints are determined through subjective

judgments. A quantitative method is lacked to avoid

incorrectness in this process. The multidimensional integral

of the objective function under synchronic interval uncer-

tainties may not be equivalent to deterministic linear

functions due to nonlinearities of interval functions.

Interval uncertainties in both constraints and the objective

function of SILP models are addressed separately in VCII.

Potential dependency among them may be neglected,

which may affect obtained solutions and their feasibilities.

Real-world SILP problems may involve other complexities

such as diversity of uncertainties, a multiplicity of pro-

gramming objectives, discreteness of component proper-

ties, dynamics of system features, the nonlinearity of

component interrelationships, and interactions of them. For

any of these cases, the developed SILP method is

inapplicable.

To enhance the feasibilities of SILP in mitigating the

aforementioned challenges in RESM, efforts can be made

to improve or extend SILP in many aspects. For instance,

synchronic probabilistic or possibilistic programming

models, as variants of SILP models, are proposed for

addressing synchronisms of randomness or fuzziness in

real-world RESM or other planning problems; in these

models, coefficients are represented as functions of random

variables or fuzzy sets to reflect the synchronic effects in

these coefficients under diversities and interactions of

RESM system components; to solve these models, effective

solution algorithms are developed based on systematic

analyses of the synchronism of those functional coeffi-

cients, referring to the VCII method developed in this

study. Besides, synchronisms of interval uncertainties in

both constraints and the objective function are evaluated

through the proposition of conditional interval functions.

Sensitivities of constraint violation likelihoods, which may

vary with constraints due to nonuniformity of unit profits or

penalties, are analyzed for enabling reasonable determi-

nation of constraint violation likelihoods and further opti-

mality of the whole system. Multilevel factorial analysis is

integrated with VCII to assess the effects of independence

of constraint analysis and objective-function analysis. SILP

can be coupled with techniques such as linearization,

artificial intelligence, probability theory, fuzzy set theory,

discreteness analysis, fractional optimization, multilevel

programming, time series analysis, global sensitivity

analysis, and mechanism design. This may be helpful for

providing reliable decision support for real-world man-

agement problems in which a variety of coupled com-

plexities exist. These improvements or extensions would

maximize potential significances of the developed SILP

method. Currently, synchronic probabilistic linear pro-

gramming is being studied. Efforts will be made on other

problems in future.

8 Conclusions

In this study, an SILP method was proposed for opti-

mization of RESM problems under synchronic interval

uncertainties. Origination, characteristics, influences and

quantitative analysis of interval uncertainties in LP prob-

lems were reviewed. A definition of interval sets was

developed for reflecting interval uncertainties. ILP models

were constructed through coupling interval sets and LP

models. Origination, influences and characterization of

synchronic interval uncertainties in the programming

objective were analyzed. Based on the definition of interval

functions, an SILP model was proposed to formulate SILP

problems. Analysis of geometric properties of feasible

regions of SILP models led to proposition of constraint

violation likelihoods (CVL). Constraints of SILP models

were transformed to deterministic linear inequalities or

equalities under given maximal values of CVLs (i.e.

CVLimax). The integrally optimal solution was proposed to

quantify the overall optimality of an SILP model based on

multidimensional integral. Equivalence with existing rela-

ted definitions, further transformation of SILP models, and

simplification of models under particular cases were dis-

cussed. Through combining these efforts, a VCII solution

method was exploited for solving SILP models. Procedures

of VCII were specified, and were demonstrated through a

simple RESM problem. SILP was compared with selected

existing methods for revealing its effectiveness. Potential

improvements and extensions of SILP were also assessed.

This study fills the gap of few studies on optimization of

RESM systems under synchronic interval uncertainties.
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Interval sets defined in this study are capable of addressing

interval uncertainties of component properties in linear

programming systems. Interval functions enable incorpo-

rating synchronic effects of interval uncertainties in the

programming objective into the optimization process. It is

revealed that geometric features of feasible regions under

interval uncertainties are independent with distributions of

coefficients. Accordingly, CVL is proposed based on the

geometric analysis. It facilitates quantifying violation of

constraints. Analysis of the tradeoff between constraint

violation likelihoods and system optimality is enabled in

the developed VCII algorithm. Significant potential nega-

tive influences of synchronic interval uncertainties, which

may lead to ineffective allocation of resources, a decrease

of system optimality, violation of constraints and unex-

pectedly high costs of recourse measures in real-world

problems, are disclosed based on numerical examples and

are mitigated in VCII. The proposition of multidimensional

interval integration in VCII achieves the overall optimality

of SILP problems under synchronic interval uncertainties.

The provision of overall optimal solutions associated with

a variety of constraint violation likelihoods facilitates risk

analysis and management of SILP problems.

Furthermore, the SILP model and the VCII method

exploit a framework of addressing synchronisms of

uncertainties in programming problems. As for other types

of uncertainties, e.g. randomness or fuzziness, the syn-

chronic effect also exists in real-world management prob-

lems. It is a particular case of interactions or dependence of

these uncertainties. The representative feature is that this

interaction is easily identified. Depending on the frame-

work of this study, synchronisms of randomness or fuzzi-

ness in real-world programming problems can be refined as

functional forms, and be incorporated into the optimization

process. Based on constraint violation analysis, multidi-

mensional integration of synchronic probabilistic or pos-

sibilistic distributions is helpful for providing decision

makers with overall optimal management schemes. A

series of disasters due to neglecting synchronisms of

intervalness, randomness, fuzziness or other uncertainties

in decision support processes can be mitigated, which is the

most significant contribution of this study.

The proposed SILPmethod in this study is the first attempt

to integrate interval functions, geometric analysis, and

interval integral together for optimization of SILP problems.

It is deficient in some aspects. For instance, SILP is not the

desired decision support tool when uncertainties do not exist

or when distributional information is known. SILP cannot

reflect synchronisms of the interval, random or fuzzy coef-

ficients in constraints and the objective function. A quanti-

tative method is lacked to avoid incorrectness in determining

acceptable constraint violation likelihoods of interval coef-

ficient constraints. Nonlinearities of interval functions may

challenge transformation of the multidimensional integral of

the objective function under synchronic interval uncertain-

ties. Neglecting potential dependency among Interval

uncertainties in both constraints and the objective function

may affect obtained solutions and their feasibilities. SILP in

ineffective at addressing the diversity of uncertainties, a

multiplicity of programming objectives, discreteness of

component properties, dynamics of system features, the

nonlinearity of component interrelationships and interac-

tions of them. Efforts will be made to mitigate these chal-

lenges, which will start from the proposition of synchronic

probabilistic linear programming methods.
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Appendix

Lemma 1 Solutions under the conservative boundary are

absolutely feasible, and that out of the optimistic boundary

are infeasible.

Proof Let R- = {X | A?X B b- and X C 0}, R? = {X |

A-X B b? and X C 0}, and R(b, A) = {X | AX B b; A- B

A B A?; X C 0; b- B b B b?; (b, A) = (b-, A?) or (b?,

A-); (b? - b-) ?
P

j=1,2,…,n(aj
? - aj

-)[0}. The lemma is

equivalent with R- , R(b, A) , R?. Let X = (x1,x2,…,-

xn) be any element in R-, and A be a real vector satisfying

A- B A B A?. From definitions of R-, we have A?X B b-,

X C 0, and AX B A?X. Namely, AX B A?X B b- B

b where b- B b B b?. Thus, X [ R(b, A), i.e. R-( R(b,

A). Since (b, A) = (b-, A?), R- absolutely belongs to R(b,

A). Let X* = (x1
*, x2

*, …, xn
*) be any vector in R(b, A) and

satisfy X* 62 R-. Similarly, we have X* [ R?, i.e. R(b,

A) ( R?. Accordingly, R(b, A) absolutely belongs to R?

because (b, A) = (b?, A-). h

Proposition 1 Let X be any solution in Rs where Rs = {X |

X C 0; A?X[b-; A-X B b?; (b? - b-) ?
P

j=1,2,…,n(aj
?

- aj
-)[ 0}. We have dXT ? dXL[ 0.

Proof For any X [ Rs, we have X C 0, A?X[b-, A-X B

b?, and (b? - b-) ?
P

j=1,2,…,n(aj
? 2 aj

-) [ 0. Since

A?X - b- [ 0, b? - A-X C 0, (A?)(A?)T [ 0 and

(A-)(A-)T [ 0, we have dXT C 0 and dXL C 0. Accord-

ingly, we have dXT ? dXL C 0. If dXT = 0 and dXL = 0, we

have (A?X - b-)/((A?)(A?)T) = 0 and (b? - A-X) /

((A-)(A-)T) = 0, i.e. A?X = b- and A-X = b?. Equiva-

lently,
P

j=1,2,…,n(aj
?�xj) = b-,

P
j=1,2,…,n(aj

-�xj) = b?, and

452 Stoch Environ Res Risk Assess (2018) 32:435–456

123



www.manaraa.com

P
j=1,2,…,n(aj

? - aj
-)�xj = b- - b?. Since

P
j=1,2,…,n(aj

? -

aj
-)�xj C 0 and b- - b? B 0, equality

P
j=1,2,…,n(aj

? -

aj
-)�xj = b- - b? holds for any solution of non-negative

decision variables xj (j = 1, 2, …, n) if and only if

b? = b- and aj
? = aj

- for any j [ {1, 2, …, n}. As a result,

(b? - b-) ?
P

j=1,2,…,n(aj
? - aj

-) = 0, which contradicts

with the given condition (b? - b-) ?
P

j=1,2,…,n(aj
? - aj

-)

[ 0. Thus, it does not hold that dXT = dXL = 0. h

Theorem 1 For any i [ {1, 2, …, t}, the ith constraint in

SILP model (1) is equivalent to inequality (2).

Proof From formulations of CVLi, we have inequality

CVLi B CVLimax is equivalent with [(Ai
?X - bi

-)/((Ai
?)

(Ai
?)T)]/{[(Ai

?X - bi
-)/((Ai

?)(Ai
?)T)] ? [(bi

? - Ai
-X)/

((Ai
-)(Ai

-)T)]} B CVLimax. Since X [ Rs, we have A?X[
b-, A-X B b?, and (b? - b-) ?

P
j=1,2,…,n(aj

? - aj
-)[0.

Therefore, [(Ai
?)(Ai

?)T(bi
? - Ai

-X) ? (Ai
-)(Ai

-)T(Ai
?X -

bi
-)][ 0. Besides, it holds for any i [ {1, 2, …, t} that

(Ai
-)(Ai

-)T C 0 and (Ai
?)(Ai

?)T C 0. Thus, we have

inequality [(Ai
?X - bi

-)/((Ai
?)(Ai

?)T)]/{[(Ai
?X - bi

-)/

((Ai
?)(Ai

?)T)] ? [(bi
? - Ai

-X)/((Ai
-)(Ai

-)T)]} B CVLimax is

equivalent to [(Ai
?X - bi

-) / ((Ai
?)(Ai

?)T)] B

(CVLimax){[(Ai
?X - bi

-) / ((Ai
?)(Ai

?)T)] ? [(bi
? - Ai

-X) /

((Ai
-)(Ai

-)T)]}, (1 - CVLimax)(Ai
?X - bi

-)((Ai
-)(Ai

-)T) B

(CVLimax)(bi
? - Ai

-X)((Ai
?)(Ai

?)T), and then [(1 -

CVLimax)(Ai
-)(Ai

-)TAi
? ? (CVLimax)(Ai

?)(Ai
?)TAi

-]X B

(CVLimax)(Ai
?) (Ai

?)Tbi
? ? (1 - CVLimax)(Ai

-)

(Ai
-)Tbi

-. h

Proposition 2 For any i [ {1, 2, …, t}, assume X [ Rs and

CVLimax1 and CVLimax2 are any two values of CVLimax. If

CVLimax1\ CVLimax2 and Ai(CVLimax1)X B bi(CVLimax1),

then Ai(CVLimax2)X B bi(CVLimax2).

Proof Let X be any vector in {X | X [ Rs; Ai(CVLimax1)X B

bi(CVLimax1)}. Then X satisfies X [ Rs and Ai(CVLimax1)-

X B bi(CVLimax1). From Theorem 1, we have inequality

Ai(CVLimax1)X B bi(CVLimax1) is equivalent with [(Ai
?X -

bi
-)/((Ai

?)(Ai
?)T)]/{[(Ai

?X - bi
-)/((Ai

?)(Ai
?)T)] ? [(bi

? -

Ai
-X)/((Ai

-)(Ai
-)T)]} B CVLimax1. Since CVLimax1 \

CVLimax2, so [(Ai
?X - bi

-)/((Ai
?)(Ai

?)T)]/{[(Ai
?X - bi

-)/

((Ai
?)(Ai

?)T)] ? [(bi
? - Ai

-X)/((Ai
-)(Ai

-)T)]}\ CVLimax2.

Namely, X belongs to {X | X [ Rs and Ai(CVLimax2)X B

bi(CVLimax2)}. No element in {X | X [ Rs and Ai(-

CVLimax1)X B bi(CVLimax1)} can satisfy Ai(CVLimax2)-

X = bi(CVLimax2), because CVLimax1 \ CVLimax2.

Therefore, {X | X [ Rs and Ai(CVLimax1)X B bi(CVLimax1)}

absolutely belongs to {X | X [ Rs and Ai(CVLimax2)X B

bi(CVLimax2)}. h

Remark 1 For any CVLimax [ [0, 1] and any i [ {1, 2, …,

t}, Lij(CVLimax) [ [aij
-, aij

?] and Ri(CVLimax) [ [bi
-, bi

?]

where Lij(CVLimax) = [(1 - CVLimax)�aij?�(Ai
-)(Ai

-)T ?

(CVLimax)�aij-�(Ai
?)(Ai

?)T]/[(1 - CVLimax)�(Ai
-)(Ai

-)T ?

(CVLimax)�(Ai
?)(Ai

?)T] and Ri(CVLimax) = [(CVLimax)�bi?-

(Ai
?)(Ai

?)T ? (1 - CVLimax)�bi-�(Ai
-)(Ai

-)T]/[(1 -

CVLimax)�(Ai
-)(Ai

-)T ? (CVLimax)�(Ai
?)(Ai

?)T].

Proof Based on formulations of Lij(CVLimax) and Ri(-

CVLimax), it is equivalent to prove [(1 - CVLimax)�aij?-

(Ai
-)(Ai

-)T ? (CVLimax)�aij-�(Ai
?)(Ai

?)T] C [(1 - CVLimax)�
(Ai

-)(Ai
-)T ? (CVLimax)�(Ai

?) (Ai
?)T]�aij-, [(1 - CVLimax)�

aij
?�(Ai

-)(Ai
-)T ? (CVLimax)�aij-�(Ai

?)(Ai
?)T] B [(1 -

CVLimax)�(Ai
-)(Ai

-)T ? (CVLimax)�(Ai
?) (Ai

?)T]�aij?,
[(CVLimax)�bi?�(Ai

?)(Ai
?)T ? (1 - CVLimax)�bi-�(Ai

-)(-

Ai
-)T] C [(1 - CVLimax)�(Ai

-)(Ai
-)T ? (CVLimax)�(Ai

?)(-

Ai
?)T]�bi-, and [(CVLimax)�bi?�(Ai

?)(Ai
?)T ? (1 -

CVLimax)�bi-�(Ai
-) (Ai

-)T] B [(1 - CVLimax)�(Ai
-)(Ai

-)T ?

(CVLimax)�(Ai
?)(Ai

?)T]�bi?. Namely, [(1 - CVLimax)�aij?-

(Ai
-)(Ai

-)T] C [(1 - CVLimax)�(Ai
-)(Ai

-)T]�aij-, [(CVLimax)�
aij
-�(Ai

?)(Ai
?)T] B [(CVLimax)�(Ai

?)(Ai
?)T]�aij?, [(CVLimax)-

bi
?�(Ai

?)(Ai
?)T] C [(CVLimax)�(Ai

?)(Ai
?)T]�bi-, and [(1 -

CVLimax)�bi-�(Ai
-)(Ai

-)T] B [(1 - CVLimax)�(Ai
-)(Ai

-)-
T]�bi?. These inequalities hold because, for any i [ {1, 2,…,

t} and any j [ {1, 2, …, n}, we have 1 - CVLimax C 0,

CVLimax C 0, (Ai
-)(Ai

-)T C 0, (Ai
?)(Ai

?)T C 0, aij
? C aij

-

and bi
? C bi

-. h

Theorem 2 DCVL(CVLimax) \ DCVL(CVLimax) if

CVLimax1 \ CVLimax2 where CVLimax1 and CVLimax2 are

two levels of CVLimax.

Proof Due to the formulation of DCVL(CVLimax), it is

sufficient to prove that both Fij(Lij(CVLimax)) and Gi(Ri(-

CVLimax)) are monotonically decreasing with CVLimax for

any i [ {1, 2, …, t} and j [ {1, 2, …, n}. It is equivalent to

prove that a) Lij(CVLimax1) C Lij(CVLimax2) and b) Ri(-

CVLimax1) B Ri(CVLimax2), since both Fij(�) and Gi(�) are
monotonically increasing functions.

(a). Since CVLimax1 B CVLimax2 and aij
- B aij

?, we have

(CVLimax1-CVLimax2)�(aij- - aij
?) C 0. Because (Ai

?)(Ai
?)T

�(Ai
-)(Ai

-)T[0, we have (CVLimax1)�(1 - CVLimax2)�aij- ?

(1 - CVLimax1)�(CVLimax2)�aij? C (CVLimax2)�(1 -

CVLimax1)�aij- ? (1 - CVLimax2)�(CVLimax1)�aij?. Equiva-

lently, we have (1 - CVLimax1)�(1 - CVLimax2)�aij?�(Ai
-)

(Ai
-)T�(Ai

-)(Ai
-)T ? [(CVLimax1)�(1 - CVLimax2)�aij- ? (1

- CVLimax1)�(CVLimax2)�aij?]�(Ai
?) (Ai

?)T�(Ai
-)(Ai

-)T ?

(CVLimax1)�(CVLimax2)�aij-�(Ai
?)(Ai

?)T�(Ai
?)(Ai

?)T C (1 -

CVLimax1)�(1 - CVLimax2)�aij?�(Ai
-)(Ai

-)T�(Ai
-)(Ai

-)T ?

[(1 - CVLimax1)�(CVLimax2)�aij- ? (CVLimax1)�(1 -

CVLimax2)�aij?]�(Ai
?) (Ai

?)T�(Ai
-)(Ai

-)T ? (CVLimax1)-

CVLimax1)�(CVLimax2)�aij-�(Ai
?)(Ai

?)T�(Ai
?)(Ai

?)T, and fur-

thermore (1 - CVLimax1)�aij?� (Ai
-)(Ai

-)T�(1 - CVLimax2)�
(Ai

-)(Ai
-)T ? (CVLimax1)�aij-�(Ai

?)(Ai
?)T�(1 - CVLimax2)-

(Ai
-)(Ai

-)T ? (1 - CVLimax1)�aij?�(Ai
-)(Ai

-)T�(CVLimax2)�
(Ai

?)(Ai
?)T ? (CVLimax1)�aij-�(Ai

?) (Ai
?)T�(CVLimax2)�(Ai

?)

(Ai
?)T C (1 - CVLimax2)�aij?�(Ai

-)(Ai
-)T�(1 - CVLimax1)-

(Ai
-)(Ai

-)T ? (CVLimax2)�aij-�(Ai
?)(Ai

?)T�(1 - CVLimax1)�
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(Ai
-) (Ai

-)T ? (1 - CVLimax2)�aij?�(Ai
-)(Ai

-)T�(CVLimax1)�
(Ai

?) (Ai
?)T ? (CVLimax2)�aij-�(Ai

?)(Ai
?)T�(CVLimax1)�(Ai

?)

(Ai
?)T. Since [(1 - CVLimax)�(Ai

-)(Ai
-)T ? (CVLimax)�(-

Ai
?)(Ai

?)T]C 0 for any CVLimax [ [0, 1] and any i [ {1, 2,…,

t}, we have [(1 - CVLimax1)�aij?�(Ai
-)(Ai

-)T ? (CVLimax1)�-
aij
-�(Ai

?)(Ai
?)T]�[(1 - CVLimax2)�(Ai

-) (Ai
-)T ? (CVLimax2)-

(Ai
?) (Ai

?)T] C [(1 - CVLimax2)�aij?�(Ai
-)(Ai

-)T ?

(CVLimax2)�aij-�(Ai
?)(Ai

?)T]�[(1 - CVLimax1)�(Ai
-)(Ai

-)T ?

(CVLimax1)�(Ai
?)(Ai

?)T]. Thus, [(1 - CVLimax1)�aij?�(Ai
-)(-

Ai
-)T ? (CVLimax1)�aij-�(Ai

?) (Ai
?)T]/[(1 - CVLimax1)�(Ai

-)(-

Ai
-)T ? (CVLimax1)�(Ai

?)(Ai
?)T] C [(1 - CVLimax2)�aij?�(Ai

-)

(Ai
-)T ? (CVLimax2)�aij-�(Ai

?) (Ai
?)T]/[(1 - CVLimax2)�(Ai

-)

(Ai
-)T ? (CVLimax2)�(Ai

?)(Ai
?)T]. It is equivalent to Lij(-

CVLimax1) C Lij(CVLimax2) from the formulation of

Lij(CVLimax). h

(b). From the formulation of Ri(CVLimax), we are going

to prove [(CVLimax1)�bi?�(Ai
?)(Ai

?)T ? (1 - CVLimax1)�-
bi
-�(Ai

-)(Ai
-)T]/[(1 - CVLimax1)�(Ai

-)(Ai
-)T ?

(CVLimax1)�(Ai
?)(Ai

?)T] B [(CVLimax2)�bi?�(Ai
?) (Ai

?)T ?

(1 - CVLimax2)�bi-�(Ai
-)(Ai

-)T]/[(1 - CVLimax2)�
(Ai

-)(Ai
-)T ? (CVLimax2)�(Ai

?)(Ai
?)T]. That is,

[(CVLimax1)�bi?�(Ai
?)(Ai

?)T ? (1 - CVLimax1)�bi-�(Ai
-)(-

Ai
-)T]�[(1 - CVLimax2)�(Ai

-)(Ai
-)T ? (CVLimax2)�(Ai

?)

(Ai
?)T] B [(CVLimax2)�bi?�(Ai

?)(Ai
?)T ? (1 - CVLimax2)�-

bi
-�(Ai

-)(Ai
-)T]�[(1 - CVLimax1)�(Ai

-)(Ai
-)T ? (CVLimax1)�

(Ai
?)(Ai

?)T], or (CVLimax1)�bi?�(Ai
?)(Ai

?)T�(1 - CVLimax2)�
(Ai

-)(Ai
-)T ? (1- CVLimax1)�bi-�(Ai

-) (Ai
-)T�(1- CVLimax2)�

(Ai
-)(Ai

-)T ? (CVLimax1)�bi?�(Ai
?)(Ai

?)T�(CVLimax2)�(Ai
?)(-

Ai
?)T ? (1 - CVLimax1)�bi-�(Ai

-) (Ai
-)T�(CVLimax2)�(Ai

?)(-

Ai
?)T B [(CVLimax2)�bi?�(Ai

?)(Ai
?)T�(1 - CVLimax1)�(Ai

-)

(Ai
-)T ? (1 - CVLimax2)�bi-�(Ai

-)(Ai
-)T�(1 - CVLimax1)�(-

Ai
-)(Ai

-)T ? (CVLimax2)�bi?�(Ai
?)(Ai

?)T�(CVLimax1)�(Ai
?)

(Ai
?)T ? (1 - CVLimax2)�bi-�(Ai

-)(Ai
-)T�(CVLimax1)�(Ai

?)(-

Ai
?)T. It is equivalent to [(CVLimax1)�(1 - CVLimax2)�bi? ? (1

- CVLimax1)�bi-�(CVLimax2)]�(Ai
?)(Ai

?)T�(Ai
-)(Ai

-)T ? (1 -

CVLimax1)�(1 - CVLimax2)�bi-�(Ai
-)(Ai

-)T�(Ai
-)(Ai

-)T ?

(CVLimax1)�(CVLimax2)�bi?�(Ai
?)(Ai

?)T�(Ai
?)(Ai

?)T B [(1 -

CVLimax1)�(CVLimax2)�bi? ? (CVLimax1)�(1 - CVLimax2)�bi-]-
(Ai

?)(Ai
?)T�(Ai

-)(Ai
-)T ? (1 - CVLimax1)�(1 - CVLimax2)�-

bi
-�(Ai

-)(Ai
-)T�(Ai

-)(Ai
-)T ? (CVLimax1)�(CVLimax2)�bi?�(Ai

?)

(Ai
?)T�(Ai

?)(Ai
?)T. Since CVLimax1 B CVLimax2 and bi

- B bi
?,

we have [(CVLimax1)�(1 - CVLimax2)�bi? ? (1 - CVLimax1)-

bi
-�(CVLimax2)] - [(1 - CVLimax1)�(CVLimax2)�bi? ?

(CVLimax1)�(1 - CVLimax2)�bi-] = (CVLimax1-CVLimax2)�(bi?
- bi

-) and (CVLimax1-CVLimax2)�(bi? - bi
-) B 0. At the

meantime, (Ai
?)(Ai

?)T�(Ai
-)(Ai

-)T C 0. Thus, we have Ri(-

CVLimax1) B Ri(CVLimax2). h

Theorem 3 If the necessarily optimal solution exists for

SILP-2 model (3), the integrally optimal solution equals to

the necessarily optimal solution.

Proof Let Xopt = (x1opt, x2opt, …, xnopt) be the integrally

optimal solution of model (3). From Definition 6, we have

R
. . .

R Pn
j¼1 gj d1; d2; . . .; drð Þ þ hj

	 

xj

	 
n o
d d1ð Þ. . .d drð Þ

is maximized when X = Xopt. Namely, there does not

exist another feasible solution X
0
= (x1

0
, x2

0
, …, xn

0
) such

that
R
. . .

R Pn
j¼1 gj d1; d2; . . .; drð Þ þ hj

	 

x0j

h in o
d d1ð Þ. . .

d drð Þ [
R
. . .

R Pn
j¼1 gj d1; d2; . . .; drð Þ þ hj

	 

xjopt

	 
n o
d

d1ð Þ. . .d drð Þ. Assume Xopt is not the necessarily optimal

solution that exists for SILP-2 model (3). From the defi-

nition of necessarily optimal solution, there must exist

another vector of feasible solutions, assumed as X
00
= (x1

00
,

x2
00
, …, xn

00
), such that

Pn
j¼1 gj d1; d2; . . .; drð Þ þ hj

	 

x00j

h i
�

Pn
j¼1 gj d1; d2; . . .; drð Þ þ hj

	 

xjopt

	 

for all combinations of

dk [ [dk
-, dk

?] (k = 1, 2, …, r) and
Pn

j¼1 gj d1; d2; . . .;ð
		

drÞ þ hj�x00j �[
Pn

j¼1 gj d1; d2; . . .;ð
		

drÞ þ hj�xjopt� for at

least one combination of dk [ [dk
-, dk

?] (k = 1, 2, …, r).

Thus, we have
R
. . .

R Pn
j¼1 gj d1; d2; . . .; drð Þþ

		n

hj�x00j �gd d1ð Þ. . .d drð Þ[
R
. . .

R Pn
j¼1 gj d1; d2; . . .; drð Þþ

		n

hj�xjopt�gd d1ð Þ. . .d drð Þ. This is contradictory to the maxi-

mization of
R
. . .

R Pn
j¼1 gj d1; d2; . . .; drð Þ þ hj

	 

xjopt

	 
n o

d d1ð Þ. . .d drð Þ. Therefore, the integrally optimal solution is

also the necessarily optimal solution. h
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